GROUP THEORY: RE-EXAM 2016

DOCENT: A. V. KISELEV

Problem 1 (20%). For p prime and n < p, prove that the only way in which the group $\mathbb{Z}/p\mathbb{Z}$ can act on the set of n objects is the *trivial* action: $(g, s) \mapsto s$ for all $g \in \mathbb{Z}/p\mathbb{Z}$ and any object s.

Problem 2 (20%). To prevent acts of vandalism in a museum, a photocamera was set to watch the ancient cultural artefacts, and so it did: 1234. Three hooligans called X, Y, and Z fancied that permuting old artefacts would be fun (in fact, it is not).

Here are the photo-camera shots of two permutations each of them did. Whose two permutations were *conjugate*?

Problem 3 (20%). Let $n \ge 4$. Prove that in the group A_n of parity-even permutations of $\{1, \ldots, n\}$, all products of two disjoint 2-cycles are pairwise conjugate.

Problem 4 (20%). Let G be a finite group and $H \leq G$ be a subgroup of index n, so that $\sharp G = n \cdot \sharp H$. Recall that $\sharp S_n = n!$ and now prove that $g^{n!} \in H$ for every $g \in G$.

Problem 5 (12% + 8%). Consider the subgroup

$$H := \mathbb{Z} \cdot (2,3,3) + \mathbb{Z} \cdot (5,5,5) \subsetneq \mathbb{Z}^3.$$

Find (i) the order of the element (1,0,0) + H and (ii) of the element (0,0,1) + H in the factorgroup \mathbb{Z}^3/H .

Date: April 11, 2016. GOOD LUCK!